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Tracking accuracy of a semi-Lagrangian method for
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SUMMARY

There is an increasing need to improve the computational efficiency of river water quality models
because: (1) Monte-Carlo-type multi-simulation methods, that return solutions with statistical distributions
or confidence intervals, are becoming the norm, and (2) the systems modelled are increasingly large and
complex. So far, most models are based on Eulerian numerical schemes for advection, but these do not
meet the requirement of efficiency, being restricted to Courant numbers below unity. The alternative of
using semi-Lagrangian methods, consisting of modelling advection by the method of characteristics, is
free from any inherent Courant number restriction. However, it is subject to errors of tracking that result in
potential phase errors in the solutions. The aim of this article is primarily to understand and estimate these
tracking errors, assuming the use of a cell-based backward method of characteristics, and considering
conditions that would prevail in practical applications in rivers. This is achieved separately for non-uniform
flows and unsteady flows, either via theoretical considerations or using numerical experiments. The main
conclusion is that, tracking errors are expected to be negligible in practical applications in both unsteady
flows and non-uniform flows. Also, a very significant computational time saving compared to Eulerian
schemes is achievable. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last few decades, numerical modelling of environmental problems has greatly benefitted
from the emergence of increasingly powerful computers. River hydrodynamics and mass transport
scenarios can now be modelled using numerical schemes that are able to provide accurate solu-
tions of the fully three-dimensional Navier–Stokes and advection–diffusion equations. However,
the applicability of such 3D models to practical problems is challenged by the large quantity of
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physical information required (channel geometry, turbulence parameters, friction parameters, tur-
bulent diffusion coefficients), and the complicated form of the initial and boundary conditions [1].
Therefore, 2D and even 1D mathematical models are widely used in engineering practice. In the
latter case, open-channel hydrodynamics are commonly modelled by the St-Venant equations, and
mass transport is described by the advection–dispersion equation (see Reference [2]).

The advection–dispersion equation has sound physical foundations, and there is a considerable
amount of evidence that it describes 1D mixing in many rivers reasonably well [3]. Also, its
unidimensionality allows much faster numerical modelling than is permitted in the case of the
2D and 3D advection–diffusion equations. However, when combined with chemical or biolog-
ical reactions, or with sediment sorption terms, the so-obtained river water quality model still
relies on a number of parameters (dispersion coefficient, reaction coefficients, etc.), that are not
generally known with sufficient accuracy. The effects of such uncertainties on model outcome
can be assessed by using multi-simulation-based procedures such as the Monte-Carlo method [4].
This implies running the model a very large number of times, typically hundreds or thousands,
depending on the number of parameters involved. This heavy computational cost emphasizes the
need for increasingly efficient numerical methods, even in the current context of rapidly increasing
computer power. This need is also motivated by the increase in the size and time scale of modelled
environmental systems.

Traditional Eulerian numerical schemes (including finite-difference and finite-element
methods) for advection–diffusion, on which most river water quality models are based, have a
limited computational efficiency, because of limitations on the time step size that apply primarily
to the advection solver, in the case of advection-dominated river flows (see References [5, 6]).
These limitations are particularly clearly expressed for explicit schemes, where the condition for
numerical stability is often that Cr, the Courant number (Cr=U�t/�x , where U is the velocity,
and �x and �t are the space and time steps) should be smaller than 1.

The way forward towards the development of a numerical model for advection–dispersion that
is not limited by Courant number restrictions is the Lagrangian approach, where the modelling
of advection is based on the method of characteristics, which is faithful to the physical process
of advection for all time step magnitudes. Eulerian–Lagrangian or semi-Lagrangian methods
(Lagrangian methods that still rely on the use of a fixed computational grid) have been developed
and advocated by various workers, either from a theoretical point of view or for various appli-
cations ranging from solute transport in porous media to ocean pollution studies and numerical
weather prediction, see for example References [7–10]. However, these studies cannot be directly
extended to the particular field of 1D solute transport in rivers, that, like any other, requires some
specific physical scenarios to be considered. Such particular studies have been carried out by
Manson and Wallis and co-workers (see for example References [6, 11–13]), who have demon-
strated the potentially much superior computational efficiency of semi-Lagrangian methods
(compared to Eulerian schemes) for advection–dispersion computations in steady uniform flows
in rivers.

The purpose of this paper is to increase knowledge of the behaviour of semi-Lagrangian methods
for advection–dispersion in one dimension by considering non-uniform and unsteady river flows.
More specifically, this involves understanding the nature of and assessing the expected magnitude
of the tracking errors that the method of characteristics may suffer from when applied to spatially
and temporally varying flows. Also the potential for semi-Lagrangian methods to speed up 1D
solute transport computations by at least one order of magnitude, compared to Eulerian methods,
is considered. It is emphasized that the work is undertaken in light of the typical conditions that
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SEMI-LAGRANGIAN METHOD FOR ADVECTION–DISPERSION 3

prevail in the context of river flows and river mass transport (of dissolved pollutant or even fine
sediment) scenarios.

The paper starts, in Section 2, with a concise presentation of the advection–dispersion equation,
followed by a demonstration of the limitations of Eulerian models for advection. Then the basic
principles of semi-Lagrangian methods are introduced, including the approach more specifically
used by the authors, the cell-based backward method of characteristics (referred to as CBMOC).
In Section 3, tracking errors in non-uniform flows are approached from a theoretical point of view,
being illustrated and quantified by a semi-theoretical test case. The case of unsteady flows is then
studied by numerical experiments in Section 4. The issue of computational time is considered in
Section 5.

2. BACKGROUND

2.1. The 1D advection–dispersion equation in non-uniform unsteady flows

The cross-sectional averaged 1D advection–dispersion equation for mass transport in unsteady
non-uniform incompressible flows reads:

�C
�t

+U
�C
�x

= 1

A

�
�x

(
AD

�C
�x

)
(1)

where C , U and A are the cross-sectional averaged concentration and velocity, and the cross-
sectional area, respectively. The dispersion process (RHS term) arises from the combined effects
of longitudinal spreading due to transverse and vertical velocity gradients (velocity shear), and
transverse and vertical mixing. It was shown by Fischer [14] and Fischer et al. [2] that dispersion
could be described by a diffusion equation provided that turbulence is stationary and homogeneous
and that sufficient time has elapsed since the solute entered the flow. The coefficient D is the so-
called dispersion coefficient. It has been estimated in numerous rivers, with a very wide variation
in the reported values, from 1 to 103 m2 s−1 (see for example References [3, 15]).

2.2. Limitations of Eulerian schemes

A forward in time, central in space, finite difference interpretation of the 1D pure advection
equation, i.e. Equation (1) with D = 0, reads:

Cn+1
i − Cn

i

�t
+U

Cn
i+1/2 − Cn

i−1/2

�x
= 0 (2)

where Cn
i−1/2 and Cn

i+1/2 are, respectively, the left- and right-hand side wall values of C for the
i th computational cell. These wall values are interpolated from adjacent nodal values in some way,
resulting in well-known explicit schemes [16], such as the upwind scheme, the central scheme, or
the QUICK scheme (see Reference [17]).

The use of any of these schemes faces a major restriction originating in the fact that under many
conditions the numerical region of influence, or the ensemble of node concentrations at time level
n on which the concentration Cn+1

i depends in the numerical scheme, and the real or physical
region of influence, are distinct. In other words, the CFL condition [18] is not satisfied. The CFL

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1–21
DOI: 10.1002/fld
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condition is a necessary, but not sufficient, condition for accuracy. It usually takes the form Cr�1
for explicit Eulerian schemes.

An additional drawback of explicit Eulerian advection schemes is that they are unstable when
not meeting the CFL condition. It is well-known that some schemes (for example, QUICK, central)
are even unconditionally unstable, while the upwind scheme, as well as other explicit schemes
such as the Lax scheme, the Staggered Leapfrog scheme, or the Lax–Wendroff scheme are subject
to the stability condition expressed by Cr�1. An update on stability conditions of explicit schemes
has been proposed by Leonard [19].

Implicit schemes represent an effective way to circumvent stability problems. However, their
structure is still such that Cn+1

i depends primarily on the concentrations at a small number of
neighbouring nodes, and therefore they are not accurate at much higher Courant numbers than
those permitted on stability grounds in explicit schemes (see for example References [5, 6]).

Finally, it should be added that while the Courant number restriction may be eased as a result
of the effect of physical diffusion, this is at the expense of severe restrictions on the cell-Péclet
number Pe (Pe=U�x/D) that prove to be impractical in applications to rivers, which are usually
advection-dominated.

In conclusion, finite-difference schemes for advection have a limited potential in terms of
computational efficiency, because of the restriction that the Courant number cannot normally
exceed the order of 1. A similar state of affairs also applies to other Eulerian methods such as the
finite-element method.

2.3. Semi-Lagrangian models

Lagrangian methods have a very palpable physical interpretation since they simply consist in
tracing trajectories, understood as the curves x = x(t) that are followed by pollutant particles,
described by

dx

dt
=U (x, t) (3)

Such curves are called characteristic lines or, simply, characteristics. The pure advection equation
is equivalent to the statement

dC

dt
= 0 (4)

as long as this is evaluated along a characteristic line. In other words, the substantial derivative
of the concentration is zero, as far as pure advection is concerned.

The process of tracing a characteristic line backwards from the arrival node (xi , (n + 1)�t)
to the departure point (x�, n�t), or foot of the characteristic line, is referred to as characteristic
tracking. It is done by integrating Equation (3) as follows:

x� = xi +
∫ n�t

(n+1)�t
U (x(�), �) d� (5)

where � is a dummy integration variable. It is then evident that

Cn+1
i =Cn

� (6)
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Figure 1. Cell-wise linear characteristic lines in 1D.

The value of Cn
� must be interpolated from the known nodal values of the concentration at time

level n.
Semi-Lagrangian methods are in perfect accord with the physical process of advection, regardless

of the Courant number. However, their accuracy is still subject to three main issues, namely (1)
tracking of the characteristics, (2) departure point interpolation and (3) the potential absence of
perfect mass conservation.

In the majority of publications on semi-Lagrangian methods, characteristic tracking is based
on integration procedures such as Runge–Kutta methods (the second-order RK method is used
in, for example, References [20–23], the fourth-order RK method is used in, for example,
References [24, 25]). This normally involves a tracking substep �t (= �t/N , where N is an
integer), the size of which depends on the flow variability. In many studies concerned with rapidly
varying flow scenarios, it is found that �t must be such that the corresponding (�t-based) Courant
number cannot normally exceed 1, for accuracy reasons. An additional limitation of RK methods
is that the process of interpolating the required velocity values at the intermediate points of the
tracking procedure is expensive in terms of computational cost [24], even though a low-order
interpolation scheme is generally sufficient [8].

A minority of published schemes have used a simplified tracking technique, where characteristic
lines are cell-wise linear, as in Figure 1. Here, in each cell, a unique average value of the velocity
is used to compute the slope of all the characteristic lines crossing the cell. This method has a
significant advantage over RK methods in terms of efficiency: the cell-increments (or travel times)
� need to be calculated once only for each cell (for each time step), whereafter they can be stored
and used for each characteristic line crossing the cell.‡ This is the approach used by Roache [7],
Wallis and Manson [13] and Manson and Wallis [11, 12], in the context of their DISCUS method,
and in the present paper. A simple expression for the cell-averaged velocity U (used to compute
� =�x/U ) was proposed by Roache [7]:

U = Un
l +Un

r +Un+1
l +Un+1

r

4
(7)

where Un
l , U

n
r , U

n+1
l and Un+1

r refer to the values of the velocity at the four corners of the cell
as shown in Figure 1. To date, no systematic assessment of the tracking accuracy of this method
in either non-uniform or unsteady flow has been published.

‡They are recalculated at every time step, unless the flow is steady.
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Interpolation of concentrations at the departure points is recognized to cause errors particularly
when concentration profiles exhibit narrow extrema and discontinuities. This is also a strongly case-
dependent issue and, while a large number of interpolators have been developed, none of them can
be recognized as being optimal [8, 9]. While linear interpolation is overwhelmingly rejected on
the grounds that it causes excessive numerical diffusion [26], second-order (quadratic) polynomial
interpolation suffers from asymmetry leading to potential phase errors [27, 28]. However, third-
order (cubic) polynomial interpolation has been frequently used [11], although this scheme (and
any other higher-order polynomial scheme) is liable to cause unphysical oscillations in the event
of narrow extrema and discontinuities. Wallis and Manson [13] have been able to suppress these
oscillations using a flux limiter and a flux-based version of this interpolation scheme, albeit at the
expense of some loss in accuracy. Spline interpolators have been advocated in, for example, Refer-
ences [21, 23, 29, 30]. Neuman [31] proposed an adaptive scheme where forward-tracked clustered
particles would locally improve spatial resolution around sharp fronts. Néelz [32] concluded that
cubic polynomial interpolation was satisfactory in most cases of pollutant transport in rivers.

The possible non-conservative behaviour of semi-Lagrangian schemes [33] has been more
extensively addressed in the context of finite-element methods (FEM), leading to schemes such as
Eulerian–Lagrangian localized adjoint method (ELLAM), see Reference [10], which are inherently
mass-conservative. A systematic study of the conservativeness of a number of FEM-based schemes
can be found in Reference [34]. Interestingly, some conservative finite-difference-based semi-
Lagrangian schemes have been proposed, for example in References [11, 12], where use is made
of the cumulative mass profile, M(x), instead of the concentration profile, C(x), where M(x) is
defined as

M(x)=
∫ x

0
C(x)A(x) dx (8)

Other approaches have been introduced by Burguete and Garcia-Navarro [35], and Zoppou and
Roberts [36]. The lack of exact mass conservation has not been found to be a serious prob-
lem in practical applications such as numerical weather prediction [8], or pollutant transport in
rivers [32].

Boundary conditions are usually handled by interpolating departure concentration values on
the time axis at x = 0 instead of on the space axis. Interpolation accuracy will follow a similar
behaviour as for initial conditions and, therefore, do not require special attention. However, the
calculation of diffusion during the initial time step will need to involve a reduced diffusion time
to take into account the non-zero departure times at the feet of the characteristics. This is detailed
in Reference [32].

3. APPLICATION TO STEADY NON-UNIFORM RIVER FLOWS

In (steady) uniform flows, the velocity is a constant. Every characteristic line is a straight line and
the only type of error involved in the semi-Lagrangian modelling of advection is the concentration
interpolation error, introduced in Section 2.3. However, steady uniform flow modelling is of limited
interest, as most river flows feature variations, at least in space, i.e. they are non-uniform.

Non-uniform, yet steady, flows, are considered in this section. In unsteady flows, the unsteadiness
induces some non-uniformity (unsteady flows are always non-uniform), and thereby non-uniformity
errors, but this type of error is covered in Section 4.
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3.1. Theory

In steady non-uniform flows, Equation (7) reverts to

U = Ul +Ur

2
(9)

which is consistent with:

� = 2�x

Ul +Ur
(10)

The exact nature of the approximations made (in the process of tracking the characteristic line)
when using Equations (9) and (10) can be understood by the following considerations.

In steady non-uniform flows, the values of the velocity at the nodes, Ui , are different from node
to node (although constant in time). From a theoretical point of view, � should be evaluated by first
assuming a function U (x) describing the velocity across a cell, from x = xl at the left-hand node
to x = xr at the right-hand node (see Figure 2), and then performing the following integration:

� =
∫ xr

xl

1

U (x)
dx (11)

As tr is known from the calculations conducted in association with the adjoining cell on the
right-hand side, the value of tl is simply tl = tr − �. Repeated application of this idea enables the
characteristic to be tracked in a cell-wise manner.

The choice of U (x) is effectively an interpolation problem. For example, if a cubic spline
or a cubic polynomial interpolation is used, U (x) becomes a third-order polynomial, and the
integration of Equation (11) can in principle be performed analytically. However, this involves
a rather complicated combination of polynomials, ln and arctan functions, potentially implying
a large computational cost, repeated for every cell. It is not clear whether the increased accuracy is
worth the computation time involved. Consequently, it is worth testing the much simpler alternative
of Equation (10).

Using Equation (10) could be seen as consistent with assuming a linear internode variation of
U (x). In fact this is not exactly the case, as shown by the following. The assumption of linear
internode variation between the node values U (xl) =Ul and U (xr) =Ur implies that

U (x)=Ul + x − xl
xr − xl

(Ur −Ul) for xl�x�xr (12)

Figure 2. Definition of the cell (or internode) travel time �, and of the points (xl, tl) and (xr, tr).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1–21
DOI: 10.1002/fld
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Combining Equations (11) and (12), integrating and recalling that xr − xl = �x yields:

� =�x
ln(Ur) − ln(Ul)

Ur −Ul
if Ul �= Ur (13)

or

� = �x

Ul
if Ul =Ur (14)

Equations (13) and (14) provide the exact value of � if a linear variation of U (x) is assumed.
In contrast, Equation (10) provides an approximation of Equations (13) and (14).

Introducing �linear as the value of � calculated by Equation (13) (or (14)) and �approx as its
value calculated by Equation (10), it can be shown that 0.999��approx/�linear�1 provided that
0.9�Ur/Ul�1.1. In other words, �approx provides an excellent approximate value of �linear if the
velocity variation across the cell is less than 10%. However, if the velocity variation is larger
than 10%, �approx may be significantly smaller than �linear. It is worth adding that it is never larger
(�approx/�linear�1 for any value ofUr/Ul), which implies that the errors occurring along the channel
add up, and never cancel each other.

3.2. Example and results

The example proposed here features a channel where the velocity U (x) varies with distance
according to a Gaussian, as in

U (x)= exp

(
− (x − xU )2

2�2U

)
· �U +U0 (15)

where xU is the abscissa of the centroid of the velocity profile, �U is its standard deviation, U0 is
the ‘base’ value of the velocity (its value outside the Gaussian profile), and �U is the amplitude
of the velocity variation. With xU = 15 000 m, �U = 250 m, U0 = 1 m s−1 and �U = 4 m s−1, the
velocity profile is as shown in Figure 3(a). In the context of real rivers, such a velocity variation
can be considered severe, yet physically realistic.

Using a cell length, �x , equal to 100 m, the following quantities were evaluated:

• �exact using Equation (11) and the U (x) function from Equation (15),§

• �linear using Equations (13) or (14), and the node values Ul and Ur, calculated using the same
Equation (15),

• �approx using Equation (10) and the same values of Ul and Ur,
• �linear defined as �linear = �linear − �exact,
• �approx defined as �approx = �approx − �linear,
• �total defined as �total = �approx − �exact = �linear + �approx.

The quantity �linear is the error (in the value of �) due to the internode linearity assump-
tion. The quantity �approx is the additional error due to the use of Equation (10) instead of

§This was done numerically, within a relative error of 10−3, using an adaptive recursive Simpson’s rule
(preprogrammed function in MATLAB).
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Figure 3. (a) Velocity profile; and (b) values �linear, �approx, and �total. The vertical lines show
the locations of the spatial nodes.

Equation (13). The quantity �total is the sum of these errors, i.e. the total error due to the use
of Equation (10), instead of a supposedly exact method.

Figure 3(b) shows the values of �linear, �approx, and �total in all the cells affected by the velocity
variation. The first observations that can be made are that �linear and �approx depend on the variations
of U in a manner that is consistent with most expectations, with �approx being largest where the
first gradient of U (x) is largest, and �linear being largest (in absolute value) where the second and
higher order gradients of U (x) are largest. However, it should also be noted that �linear is not
very large in the part of the channel corresponding to the peak of the Gaussian profile, despite
the presence of large second and higher order gradients of U (x). This is due to the high velocity
there, that induces a small internode travel time �, and hence a small absolute error in �. This
feature may not be specific to the present example, as, in general, convexities in the upward and
downward direction are found more in conjunction with regions of higher and lower velocities,
respectively. Therefore, �linear would, in general, take greater negative values than positive ones.

A characteristic line tracked down from the ‘arrival’ point at time-level n + 1, through this
non-uniform flow, and down to the ‘departure’ point at time-level n is subject to the total error:

Etotal = Elinear + Eapprox =∑ �total (16)
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where

Elinear =∑ �linear (17)

and

Eapprox =∑ �approx (18)

where the summations are performed over all the cells through which the characteristic passes.
In the present example, let us assume that the characteristic passes through all the cells

represented in Figure 3. The total errors are reported in column one of Table I.
If one wishes to improve the accuracy of the solute transport simulation in this case, one

obvious method consists of reducing the cell length �x , so as to improve spatial resolution.
It can be verified in columns two and three of Table I, that if spatial resolution is increased by a
factor of 2 and 4, Etotal is reduced by a factor of 3.9 and 15.8, respectively. Also, column four
shows that if spatial resolution is worsened by a factor of 2, Etotal is increased by a factor of 3.8.
These results clearly indicate a second-order dependence of model accuracy on grid resolution. It
is also interesting to test different cases, featuring a more gradual velocity variation over a longer
distance. To this end, �U was increased by a of factor 2 and 4. Columns five and six show that,
as a result, accuracy was improved by a factor of 2.0 and 3.9, respectively. With �U reduced by a
factor of 2, accuracy was worsened by a factor of 1.9 (column seven). Finally, cases with a smaller
velocity amplitude were tested. With �U reduced by a factor of 2 and 4, accuracy was improved
by a factor of 1.7 and 3.4 (columns eight and nine), respectively. With �U increased two-fold,
Etotal was increased by a factor of 1.4 (column 10). These results suggest clearly a first-order
dependence of E total on �U , possibly also on �U .

Etotal represents a vertical shift of the left-hand end of a characteristic line. It translates into a
sideways shift of the departure point (tracking error), and consequently into a phase error in the
concentrations at time-level n + 1. The magnitude of this phase error (a distance) depends on the
velocity in the vicinity of the departure point.

With a velocity at the foot of the characteristic line equal to 1 m s−1 in this example, and
Etotal =−9.31 s as in column one in Table I, the phase error is consequently +9.31 m after the
solute has passed through the zone of variation. The effect of this on the accuracy of concentration
values depends on the size and shape of the concentration profile. It can be shown [32] that for
a poorly resolved Gaussian concentration profile of dimensionless standard deviation � = 4 (or
standard deviation �=�x · �= 400 m), the error does not exceed 5% in the central part of the
profile where C�Cpeak/10. If � becomes greater than 4 due to the effect of diffusion, this error

Table I. Cumulative errors (absolute values).

Case 1 2 3 4 5 6 7 8 9 10

�x (m) 100 50 25 200 100 100 100 100 100 100
�U (m s−1) 4 4 4 4 4 4 4 2 1 8
�U (m) 250 250 250 250 500 1000 125 250 250 250

Elinear (s) 6.23 1.57 0.40 23.98 3.15 1.58 11.99 3.74 1.85 8.93
Eapprox (s) 3.08 0.78 0.20 11.49 1.57 0.79 5.74 1.86 0.92 4.37
Etotal (s) 9.31 2.36 0.59 35.47 4.72 2.37 17.73 5.60 2.77 13.30

Cases 1–10 are described in the text. All the errors were found to be negative.
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can be reduced more, potentially to less than 1%. With a smaller value of �x , it can be made even
smaller.

3.3. Discussion

The first issue that is brought to light by the example studied above is the tendency of �linear to take
greater negative than positive values. Bearing in mind the fact that �approx, is always negative, the
total travel time error Etotal is therefore most likely to be negative. This results in the movement
of the solute by advection to be modelled faster than it should be. However, the calculated phase
error of +9.31m is moderate, despite the very severe non-uniformity of U (x). The impact on the
overall model accuracy depends on the size of the solute ‘cloud’ compared to the phase shift. It
is unlikely to be significant in practical applications.

The likelihood of a velocity variation of this shape and amplitude occurring (from 1 to 5m s−1,
and back to 1 m s−1, within a total distance of 2000 m) is a matter for discussion, but an even
more important issue is the likelihood of it being repeated many times over the length of a river.
In extremely non-uniform rivers, a total tracking error reaching values of up to, say, hundreds of
meters should not be considered unrealistic, but the example above also shows that an efficient
way to reduce it consists of reducing �x , since it depends on �x with a second-order dependency.

These conclusions should also be viewed in the context of open channel flow modelling. Any
flow model used to generate the flow field used in a pollutant transport simulation is subject to
errors that may take on significant proportions, mainly because of the lack of accuracy of the
data related to the river geomorphology. A clear example is the roughness coefficient involved in
the modelling of bed friction. One of the most widely used, Manning’s n,¶ is commonly chosen
between ∼ 0.02 for a clean straight lowland stream and ∼ 0.1 for an irregular and rough river (see
for example Reference [1]). An error in the value of n causes errors in U of similar proportions,
and therefore would result in potentially large errors in the results of a flow model. Additionally,
the advection–dispersion equation, Equation (1), is only valid in theory if a number of assumptions
are met, including that turbulence is stationary and homogeneous. There is some controversy about
its use in rivers that are significantly different from the ideal case of a uniform channel of constant
depth (see References [37, 38]). These comments put into context the limited relevance of seeking
an excessively high tracking accuracy in any model of advection–dispersion in rivers.

4. APPLICATION TO UNSTEADY RIVER FLOWS

In this section, we assume that the velocity varies in time, which also implies that it varies in
space, since variations in time only are physically unrealistic. Unsteady flows are highly relevant
to fluvial water quality problems, because concerns about pollution often occur in conjunction
with varying flows, for example when water levels reach unusual values during floods.

4.1. River flow modelling

The modelling of river hydrodynamics is outwith the scope of this paper. It is also emphasized
that there is no coupling between the flow and the transport, since the flow is assumed not to be
affected by the transport processes. This is a valid assumption in all practical cases of pollutant

¶ It is recalled that U = R2/3S1/2f /n, where R is the hydraulic radius, and S f is the energy slope.
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transport in rivers. Also, it is an underlying assumption of this work concerning mass transport,
that the flow field is computed prior to the transport model being applied. This is assumed to be
done using the same discretization in space, whereas the time step in the flow model, denoted
�tCFD, will depend on the computational fluid dynamics (CFD) method used, and is not expected
to be the same as �tT, the one used eventually in the transport model. The value of �tCFD has a
significant bearing on the accuracy of the transport model in unsteady flows, because it determines
the time-resolution with which the hydrodynamic data, on which the transport modelling relies,
are available.

Channel flow is normally modelled using the well-known shallow water or St-Venant equations
for cross-sectionally averaged gradually varied unsteady flow. In river studies, these are solved
using various numerical methods including methods of characteristics, Riemann solvers, finite
elements and finite differences (FD). An increasing number of research codes have been based on
shock-capturing schemes such as explicit Riemann solvers but in practice implicit FD schemes
predominate, particularly in commercial software. These can be used with large Courant numbers,
typically up to 10 or 20. However, they do not provide accurate results with Cr� 1 in highly
unsteady flows [39], where flood waves must be described with a sufficient time-resolution. For
this reason, it is assumed in this article that �tCFD is chosen as large as possible, although such
that Cr(flow) does not exceed the order of 1.

4.2. Details of method used for characteristic tracking

It is assumed that the time step used in the transport model, �tT, is much larger than �tCFD,
because the ambition of the present work is to allow Cr� 1 in the transport model, as introduced
earlier.

Assuming, as before, that a cell-based method of characteristics (CBMOC) is used, let us
consider the task of tracking a characteristic line backward from the ‘arrival’ node, at time-level
n + 1, to the ‘departure’ point, or foot, at abscissa x� and time-level n. The flow is unsteady, so
that at any node j , we have in general Un+1

j �=Un
j . In each cell, the travel time � = tr − tl (see

Figure 2) is now defined as follows:

� =
∫ xr

xl

1

U (x, t)
dx (19)

which involves the additional dependence of U on t . This is less straighforward to evaluate
than Equation (11). However, it is mathematically equivalent to solving the following differential
equation:

dt (x)

dx
= f (x, t) (20)

where f (x, t) = 1/U (x, t), with the initial condition t (xr) = tr.
Such an equation can be solved numerically, for t (xl) = tl, by, for example, Runge–Kutta meth-

ods. Discussing the accuracy and the computational efficiency of such methods is beyond the scope
of this article. However, these will entail computational efficiency issues, as the same procedure
has to be applied in every cell, for every characteristic line, and repeated at every time step.
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Runge–Kutta methods are not considered any further in this paper. Instead, it is proposed to use
a much simpler method based on Equation (7). This is expected to be accurate enough in river
applications, where the unsteadiness-related variation of U across the cells, both in time and space,
is of limited magnitude.

As mentioned earlier, �tCFD is assumed to be many times smaller than the time step used
in the transport model, �tT. As a consequence, a characteristic line tracked from the arrival point
at the time level n + 1, down to the departure point at time level n, intersects many time levels of
the flow computation. In the proposed CBMOC method, the characteristic line is piecewise linear,
with a linear segment in each cell delimited by two nodes and two flow time-levels, and Equation
(7) is applied in turn to each of these segments, as follows:

� = 4�x

U �
l +U �

r +U �+1
l +U �+1

r
(21)

where l and r refer to, respectively, the left- and right-hand node, while � and � + 1 refer to
the previous and the next time-levels in the flow model. For reasons of simplicity, it is assumed
that �tT/�tCFD is an integer, so that the transport time-levels coincide with flow time-levels. The
CBMOC is illustrated in Figure 4.

Equation (21) can be seen as an extension of Equation (10) to unsteady flows (and it reverts
to Equation (10) if the flow is steady). It provides an approximate value of the cell travel time
within each cell, in which the average velocity U = �x/�= (U �

l +U �
r +U �+1

l +U �+1
r )/4 is used

to compute the slope of the characteristic curve, independently of the values of tl and tr.

4.3. Example

The CBMOC was tested for a case of pure advection in a channel subjected to a rather sudden
velocity increase, where it is expected that significant unsteadiness-related tracking errors are
the most likely to appear in the semi-Lagrangian modelling. These errors are expected to depend
on the cell length �x , the order of magnitude of the velocity, the amplitude of the velocity
variations, the velocity gradients, the time step used in the flow model, the time step used in the
solute transport model and the number of time steps calculated.

Figure 4. Illustration of the CBMOC (�tT/�tCFD = 3 in this figure).
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The test concerned a channel where the velocity was as specified by the following equation:

U (x, t) =− tanh

(
x − x0 − c · t
103 · d(t)

)
· (Umax −Umin)

2
+ Umax +Umin

2
(22)

This describes a wave front travelling down the channel, with x0 being the position of the wave
front centre of symmetry at time t = 0, c being the wave celerity, d(t) being an empirical ‘slope’
factor varying with time and representing the longitudinal spreading of the wave, Umax being the
water velocity upstream of the wave and Umin being the water velocity downstream of the wave.
Using Equation (22) with Umin = 1.43 m s−1, Umax = 2.14 m s−1, c= 2.54 m s−1, x0 = 333 m, and
d(t) = 0.6 + 0.9 · t/3600, the velocity field in the first 24 km and for the first 2.5 h is as shown
in Figure 5(a). Under these conditions, any pollutant already present in the channel before the
occurrence of this wave is at some point submitted to rapid velocity variations. It is emphasized
that the wave front travels faster than the flow and that the velocity remains equal to Umax in the
wake of the wave.

Equation (22) was not chosen in an arbitrary manner. It was derived to closely fit the evolution
of the velocity profile as computed using a river modelling software package (ISIS Flow), in a
channel with a bottom slope of 0.2%, and a V-shaped cross-section with side slopes of 45◦ from
the horizontal. Manning’s roughness coefficient was set to 0.03. The discharge was initially (time
t = 0) 10 m3 s−1 along the entire channel. From t = 120 to 600 s, the discharge at the upstream
boundary was increased linearly from 10 to 50m3 s−1. It was thereafter kept constant at 50m3 s−1.
The time step used in the ISIS Flow calculations was 120 s.‖

Tracking errors in the transport model using the CBMOC were investigated experimentally in
the following way:

1. The outcome of the computation of the flow field was simulated by sampling nodal velocities
using Equation (22) at a resolution in time defined by �tCFD, the time step assumedly used
in the flow computation.

2. The solutions of an initial condition transport problem (detailed below) using the CBMOC
with increasingly long time steps were computed, using the discrete nodal velocities com-
puted in 1.

3. These solutions were compared to ‘exact’ benchmark solutions of the same problem,
obtained using the continuous (non-discrete) velocity field provided by Equation (22),∗∗ an
iterative Runge–Kutta technique†† to integrate Equation (5), and a fifth-order polynomial in-
terpolation scheme at the foot of the characteristic lines tracked down from every time-level
to t = 0.

The results from three cases numbered 1, 2, 3, are presented here. Cases 2 and 3 are similar to
Case 1, but with different values of �x and �tCFD. Case 1 is introduced first.

‖This was the largest that could be used to resolve the inflow boundary condition properly, but was also approximately
the largest that ensured a good accuracy of the CFD scheme used in the software, the Courant number taking
values up to 2.6.

∗∗Not the velocity field in its discrete form provided by ISIS.
††Based on an explicit Runge–Kutta formula, the Dormand–Prince pair; relative error tolerance 10−3 and absolute
error tolerance 10−6 obtained by iteration (preprogrammed function in MATLAB).
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Figure 5. Evolution in time and space, represented every half hour, of: (a) flow velocity; (b) flow
cross-sectional area; and (c) normalized (benchmark) solute concentration (= c/cpeak where cpeak is

the initial peak concentration).

In Case 1, the cell size �x was 100 m. The initial condition of the solute transport problem
consisted of a Gaussian profile of initial dimensionless standard deviation �= 14 (� = 14 · �x),
centred at a location 5500 m from the upstream boundary at time t = 0. The CBMOC was used
with a fifth-order polynomial interpolation scheme for evaluating concentration at the foot of the
characteristic. This ensured an excellent interpolation accuracy all the way through the test.‡‡

The time resolution of the flow data was �tCFD = 120 s. The time step used in the semi-
Lagrangian transport model �tT was made increasingly large, always such that �tT/�tCFD was an
integer, starting with �tT =�tCFD.

The evolution in time of the benchmark spatial solute concentration profile is shown in
Figure 5(c), and should be viewed in conjunction with the corresponding velocity and flow cross-
sectional area results shown in Figures 5(a) and (b), respectively.

Cases 2 and 3 were similar to Case 1, although with different parameter values as detailed in
Table II.§§ Cases 2 and 3 are useful to the understanding of the effects of reducing the cell size
�x and the flow computation time step �tCFD, respectively.

‡‡The present tests, concerned with tracking errors, needed to be free from any noise caused by interpolation errors.
Such a high level of interpolation accuracy would not be required in practice.

§§Consistently, �= 28 in Case 2 instead of 14, so that the initial solute profile keeps the same size as in Cases 1
and 3.
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Table II. Values of �x and �tCFD used in Cases 1–3.

Case 1 Case 2 Case 3

�x (m) 100 50 100
�tCFD (s) 120 120 60

4.4. Results

The numerical solute concentration results were not visually distinguishable from the benchmark
solutions presented in Figure 5(c), for any of the three cases and for any of the time steps
used. Mass conservation was checked and any change in total mass was always small, being no
greater than 3%. It is noted that the apparent reduction in size of the concentration profile in
Figure 5(c) does not indicate a loss of mass, because the cross-sectional area of the flow increases
with increasing velocity as shown by Figure 5(b).

The evolution in time of the phase error at the centre of mass of the spatial concentration
profile for various time steps from �tT = 120 s to 5400 s, using the CBMOC, is shown in
Figures 6(a)–(c), respectively for Cases 1, 2 and 3.

The results reveal (see figures) that the evolution of the phase error with time tends towards a
limit curve with increasing values of the transport time step �tT, in all three cases. Each of these
three limit curves stabilizes at a constant value of the phase error as time progresses, this value
being negative in all three cases. The reason for it to become constant in time is that, in the wake
of the wave, the flow becomes effectively uniform and steady. Therefore no additional tracking
errors are generated, although any tracking error that had occurred before this stage remains. The
fact that, for each case, this eventual tracking error seems to be almost independent of �tT, at
least when the latter is large, is in accordance with the fact that the characteristic tracking process
is based on the same flow data sampled at the same resolution, for all values of �tT. It is simply
segmented in more or fewer steps depending on �tT.

However, the curves obtained with the smallest values of �tT, particularly in Cases 1 and 3,
appear to be shifted upwards. This feature is of minor significance to the issue of characteristic
tracking errors: it is explained by the fact that the use of smaller time steps implies the more
frequent repetition of the process of interpolation at the foot of the characteristics. Hence there is
the more frequent occurrence of (albeit small) interpolation errors as �tT reduces. These errors
add up and thereby affect the location of the centre of mass of the concentration profile.¶¶ It is
worth reiterating that apart from the interpolation issue, the choice of �tT does not otherwise have
any effect on the eventual phase error caused by the characteristic tracking process, because all
the simulations are based on the same velocity field.

The most important observations to be made concern the magnitudes of the eventual tracking
error obtained at the end of the simulation. In Case 1 (Figure 6(a)), it is approximately (−) 2.9 m
(transport is predicted slower than it should). This is to be compared to the size of the discretization
in space, �x = 100m, and to the distance travelled of almost 45 000m. In Case 2 (Figure 6(b)), it
has been reduced by 5% only, from (−) 2.9 m with �x = 100 m to (−) 2.75 m with �x = 50 m,

¶¶ In these tests, the tracking error and this additional phase error counteract each other with various outcomes. For
example, for �tT =�tCFD = 120 s, see Figure 6(a), the two errors fortuitously cancel each other out. However,
this particular result is not representative and is not to be generalized.
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Figure 6. Evolution of the phase error at the centre of mass vs time, for the CBMOC results and with
different solute transport time steps, for: (a) Case 1; (b) Case 2; and (c) Case 3.
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despite the better resolution in space in Case 2. This indicates that the non-uniformities (in space)
caused by the nature of the flow are of a mild nature, hereby making the results only marginally
sensitive to �x . In Case 3 (Figure 6(c)), where �tCFD = 60 s instead of 120 s, the phase error is
strongly reduced, and stabilizes at less than (−) 1 m, instead of (−) 2.9 m in Case 1. This shows
that reducing �tCFD is an efficient way to reduce the phase error occurring with the CBMOC.

The effect of the phase error on the errors experienced by the concentrations depends on the
size and shape of the concentration profile: for a Gaussian profile with �= 4 (� = � ·�x = 400m),
and with the phase error of 2.9 m obtained in Case 1, the maximum relative error in the central
part of the profile where C�Cpeak/10 is of the order of 1%, but this would be even smaller for
larger values of �.

4.5. Discussion

The test case presented above corresponds to a very severe discharge increase from 10 to 50m3 s−1

over 8 min, causing an increase of velocity from 1.43 to 2.14 m s−1. Yet tracing a characteristic
line using the CBMOC through such a velocity field induced a small tracking error of less than
3 m. It should be reminded that under natural conditions where floods are caused by heavy
precipitation, discharge increases in rivers occur over time scales significantly larger than a few
minutes, resulting in milder velocity gradients than in the example, and, accordingly, smaller
tracking errors. Even when some extreme circumstances (earthquakes, landslides, glacier outbursts,
reservoir gate opening, dam breaks) do cause exceptional floods, these are highly unlikely to occur
more than once over a short time scale. Therefore, any original tracking error should not be
expected to grow during the remainder of any simulation.

Should modellers wish to reduce the errors to a minimum, an efficient way to do so consists in
reducing �tCFD, the time step used in the modelling of the flow.

5. COMPUTATIONAL COST

As mentioned earlier, semi-Lagrangian transport schemes have the potential for requiring much
shorter run times than Eulerian transport schemes, through the use of much larger time steps.
However, each time step itself is expected to require more computational time, due to the
computation of the characteristic lines and the interpolations at their feet. This must not offset the
benefit of using longer time steps.

In order to verify this, measurements of computational time were undertaken in an example
concerning a river 49 800 m long, divided into cells of length �x = 200 m. The maximum value
of the (unsteady) velocity was 0.65 m s−1, and the time step used in the flow model, �tCFD,
was equal to 1000 s, corresponding to a maximum (flow) Courant number of 3.25. Solute trans-
port (including both advection and dispersion) was simulated for a duration of T = 72 000 s.
Table III shows measured computation times for (1) the (Eulerian) SMART method [40] used
with a (transport) Courant number close to 1/3, which is the maximum value permitted [41],
and (2) the CBMOC method using cubic interpolation at the departure points, with increasingly
large time steps. In both cases, dispersion was modelled using the Crank–Nicholson method
for diffusion.

Table III shows that although the computation time per time step for the CBMOC did increase
with increasing values of �tT (because characteristic lines are longer in this case), the total
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Table III. Measured computation times.

Scheme �tT (s) Cr �A (s) �D (s) N t (s)

SMART 100 0.325 0.1 0.2 720 216
CBMOC 1000 3.25 0.47 0.2 72 48.24

4000 13 0.66 0.2 18 15.48
9000 29.25 1.1 0.2 8 10.4

12 000 39 1.28 0.2 6 8.88
18 000 58.5 1.65 0.2 4 7.4
24 000 78 2.14 0.2 3 7.02
36 000 117 3.1 0.2 2 6.6

�tT, transport time step; Cr, (transport) Courant number; �A, computation time for advection, per time
step; �D , computation time for diffusion, per time step; N , number of time steps; t , total computation
time.

computation time decreased significantly, because of the smaller number of time steps to be
computed. It was one order of magnitude smaller than with the Eulerian scheme for Cr of the
order of 10, and about 30 times smaller for Cr of the order of 100. It must be emphasized that the
above results were obtained without any specific optimization of the programming of characteristic
tracking, that the cell-based approach for the characteristic lines would allow [7], hereby allowing
even shorter computation times.

6. CONCLUSION

This article is concerned with the application of semi-Lagrangian methods to the numerical simula-
tion of the 1D advection–dispersion equation in steady non-uniform or unsteady river flows, with a
particular emphasis on the phase errors that occur during the process of tracking the characteristics.

A simple cell-based method of characteristics (CBMOC) assuming quasi-linear inter-node varia-
tion of velocity has been found to be subject to negligible tracking errors in a highly unsteady flow
scenario comparable to that caused by a natural flood event. In non-uniform flows, these tracking
errors are also unlikely to be significant in practical applications. Should they grow with distance
in highly non-uniform flows featuring repeated velocity variations, an efficient way to reduce them
consists of reducing the space step �x , because the tracking errors have a second-order dependency
on �x . It should also be borne in mind, however, that it is unclear whether 1D representations
of river hydrodynamics and the 1D advection–dispersion equation itself are adequate models of
the physical processes in such flow cases. So that in practical applications, these uncertainties are
probably no less a source of error than that associated with characteristic tracking.

It was found that in the semi-Lagrangian simulations, no limitation on the size of the (transport)
time step arises because of tracking errors. This is due to the spatial resolution of the characteristic
lines being independent of the time step used in the proposed CBMOC method.

Finally, a semi-Lagrangian model involving the CBMOC and the Crank–Nicholson method for
diffusion has been shown to allow a very significant computation time saving (of at least 90%
with Courant numbers of the order of 10) in the modelling of advection–dispersion, compared to
an Eulerian method (and even more so at higher Courant numbers).
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8. Staniforth A, Côté J. Semi-Lagrangian integration schemes for atmospheric models—a review. Monthly Weather

Review 1991; 119:2206–2223.
9. Oliveira A, Baptista AM. A comparison of integration and interpolation Eulerian–Lagrangian methods.

International Journal for Numerical Methods in Fluids 1995; 21:183–204.
10. Russell TF, Celia MA. An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM).

Advances in Water Resources 2002; 25:1215–1231.
11. Manson JR, Wallis SG. Conservative semi-Lagrangian algorithm for pollutant transport in rivers. Journal of

Environmental Engineering (ASCE) 1999; 125(5):486–489.
12. Manson JR, Wallis SG. A conservative, semi-Lagrangian fate and transport model for fluvial systems:

Part 1—theoretical development. Water Research 2000; 34(15):3769–3777.
13. Wallis SG, Manson JR. Accurate numerical simulation of advection using large time steps. International Journal

for Numerical Methods in Fluids 1997; 24:127–139.
14. Fischer HB. The mechanics of dispersion in natural streams. Journal of the Hydraulics Division (ASCE) 1967;

93:187–216.
15. Wallis SG, Manson JR. Methods for predicting dispersion coefficients in rivers. Water Management, Proceedings

of the Institution of Civil Engineers 2004; 157:131–141.
16. Abbott MB, Basco DR. Computational Fluid Dynamics: an Introduction for Engineers. Longman Scientific &

Technical: Singapore, 1989.
17. Leonard BP. A stable and accurate convective modelling procedure based on quadratic upstream interpolation.

Computational Methods in Applied Mechanics and Engineering 1979; 19:59–98.
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